数字图像

数字图像处理都研究什么?

1、图像的灰度调节

图像的灰度直方图、线性变换、非线性变换(包括对数变换、幂次变换、指数变换等)、灰度拉伸、灰度均衡、直方图规定化等等)。

例如,直方图规定化

 

CLAHE(contrast limited adaptive histogram equalization)自适应的直方图均衡

 

2、图像的几何变换

图像的平移、图像的镜像、转置、缩放和旋转。这里面其实还包含了插值算法(这是某些几何变换所必须的),例如最邻近插值法、双线性插值法等等)

几何变换同时和图像的滤镜特效是紧密联系的,某些特效的实现本质上就是某种类型的几何变换。例如

 

3、图像的特效与滤镜

这方面的应用很多,你可以想想Photoshop里面的滤镜。

文献Combining Sketch and Tone for Pencil Drawing Production中给出的将自然图像变成手绘素描图的效果

 

例如浮雕效果

  4、图像增强

内容包括图像的平滑(简单平均、中值滤波、高斯平滑等)和锐化(例如Laplace方法)等。

 

增强处理中的很多算法其实和图像复原中的降噪算法是重合的。现在保持边缘(或纹理结构)的平滑算法属于研究热点。像那些美颜相机里的嫩肤算法都是以此为基础的。比较常见的双边滤波

 

基于全变分方法的TV去噪、基于PM方程的非线性扩散去噪等等。

5、图像复原

广义上来说——图像降噪,图像去雾,图像去模糊 都属于这个范畴

去噪实例是用MagicHouse实现的中值滤波处理椒盐噪声的效果。此外,一些基于非局部均值的降噪算法是当前研究的热点(例如BM3D、NLM等)

 

图像去模糊

 

6、图像的压缩与编码

想想BMP图像如何转换成JPG,JPG如何变成PNG?这些都属于图像压缩编码所要探讨的内容。

7、边缘检测与轮廓跟踪

下面是一个轮廓跟踪的例子

 

8、图像分割

你可以认为轮廓跟踪也是实现图像分割的一种途径。

这是在《原理与实践(Matlab版)》中给出的一个例子——用分水岭算法对马铃薯图像进行分割。

 

9、图像的形态学处理

这也属于一种非常古老的图像处理方式了。包括膨胀、腐蚀、细化、击中/击不中、开/闭运算等。但一些对颗粒状物体进行计数的应用中它仍然非常有效。

 

10、图像的频域变换(或称正交变换)

傅立叶、离散余弦、沃尔什-哈达玛变换、K-L(卡洛南-洛伊)变换(也称霍特林变换或PCA)、小波变换(小波变换还分很多种,例如Haar小波、Daubechies小波等等)

仅仅进行频域变换其实并没有多大意义,它往往要与具体应用相结合来发挥作用。例如进行图像压缩、嵌入数字水印、进行图像融合、进行图像降噪等等。

例如,利用PCA进行图像压缩的例子

 

在比如,利用小波融合对由聚焦失败导致的图像模糊进行修复 (本来左图和中图各有部分看不清,融合后变得可以辨识)源代码可见

 

11、图像融合

广义上说融合至少包含三部分内容:像上面的基于小波的Fusion我们也认识是融合的一种,另外一种是以隐藏为目的类似嵌入式的融合,第三种是matting。matting有时反义成抠图,其实它最原本的意思就是融合。如果你理解

I = aF +(1-a)B这个融合公式的话,你应该明白我在所什么。这本质上和第二种融合原理是一样的。

狭义上,融合就是指matting。

例如 著名的Possion融合,下图右,如果直接把月亮图贴上天空,矩形边缘是很明显的,融合处理后的左图则很自然。

 

电影技术中常用matting方法来替换人物的场景。例如

 

12、图像信息安全

主要包括两个内容:1)数字水印(主要用于多媒体的版权保护);2)图像的加密(主要用于图像信息的保护)

例子是用MagicHouse实现的加密效果